IVAM Mid-Week Coffee Break, 16.3.2022

Microfluidic solutions for sample preparation and single cell handling in diagnostic systems

Dr. Michael Baßler

Fraunhofer Institute for Microengineering and Microsystems IMM

Fraunhofer IMM: Experts for Microfluidic Systems

Technology Portfolio

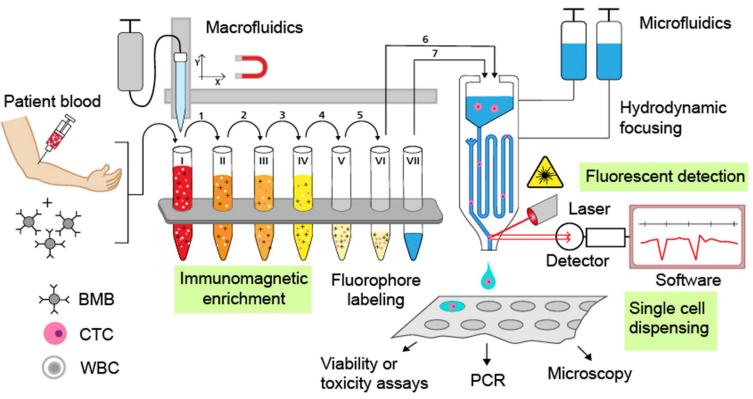
CTCelect Get access to single CTCs

Liquid Biopsy – Circulating Tumor Cells (CTCs)

fully automated microfluidic system for **isolating single CTCs** from blood primary tubes

- no manual sample preparation
- high reproducibility

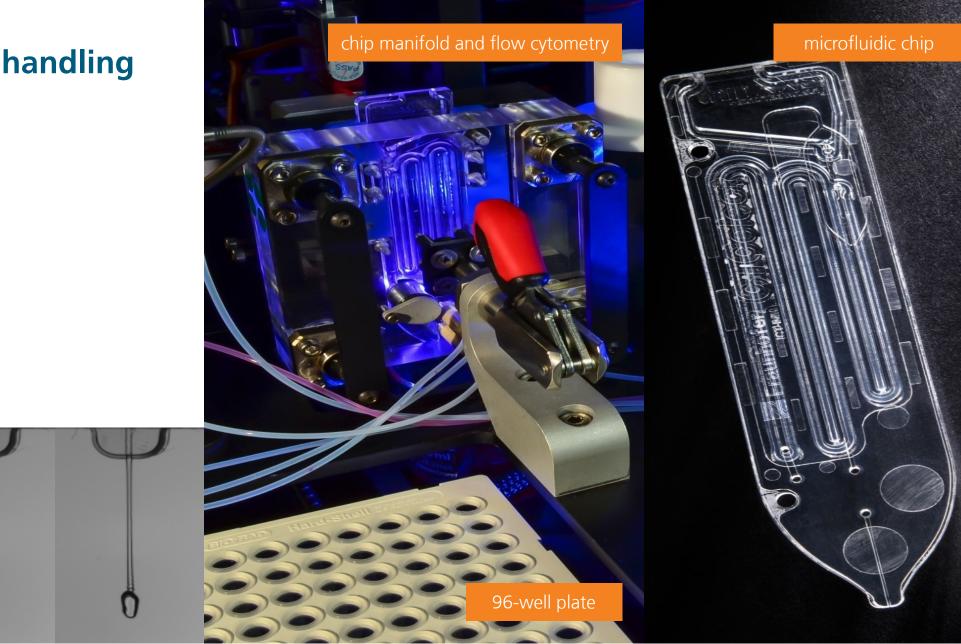
provide viable CTCs ready-to-use for single cell analysis: NGS, RT qPCR, ...


CTCelect: schematic representation of functionality and workflow

macro \rightarrow micro or 7.5 ml of blood \rightarrow single CTCs

workflow

- 1. take patient blood sample
- 2. stock instrument with reagents and consumables
- 3. insert blood sample
- 4. start cell isolation process



Fraunhofer

Microfluidic cell handling

flow cytometry

single cell dispensing

Main features of CTCelect cartridge

sample reservoir

storage meander

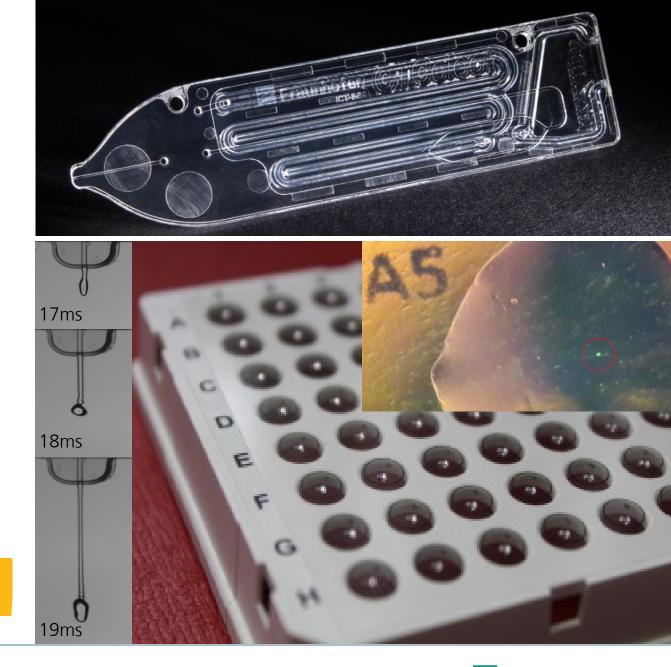
two membrane valves

flow cytometry channel

sheath flow

dispensing nozzle

three components only: one injection molded core + two foils


Microfluidic single cell dispensing

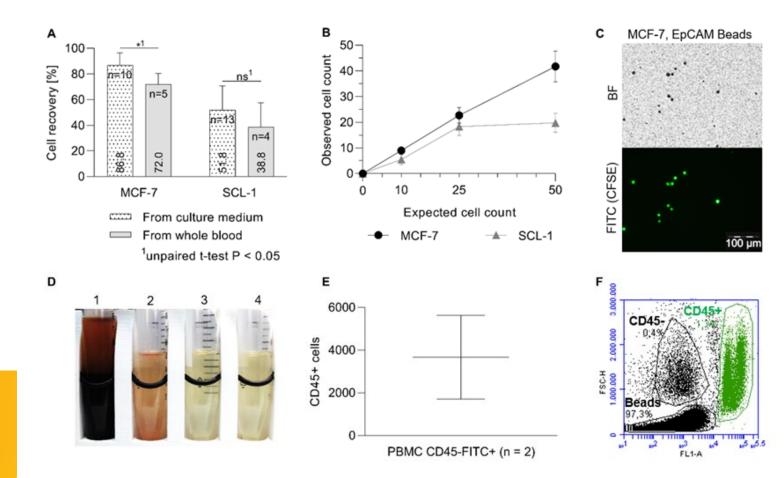
real time data processing by FPGA

CTC detected: FPGA triggers dispenser (delay depends on velocity)

feasable droplet size (current design) 0.3 µl – 3 µl

droplets precisely aligned to cavities

cell recovery 89%


Characterization of CTCelect system

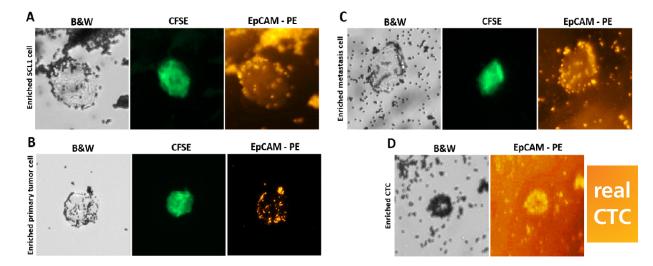
Based on tumor cell models

key results

- A), B), C) recovery rates of MCF-7 and SCL-1 cells after automated IMS from culture medium and whole blood.
- D) blood residues and wash buffers
- E), F) flow cytometry of blood cell contamination

→ robust cell recovery
→ little hands-on time
→ low blood cell contamination

[Stiefel et al. (2022). Accepted for publication in WILEY Engineering in Life Sciences].



Recovery of real tumor cells from patient blood

experiment

- biopsies of primary tumor or metastasis dissolved into single cells
- spike dissolved cells into patient's blood

Cells	Number of spiked-in cells	Cell recovered	Recovery rate %
SCL1	30	22	73
SCL1	30	20	67
SCL1	30	21	70
		Mean	70
Primary tumor	30	24	80
Primary tumor	30	22	73
Primary tumor	30	26	87
		Mean	80
Metastasis	30	26	87
Metastasis	30	24	80
Metastasis	30	27	90
		Mean	85

recovery rate >80% (n=3) (primary tumor, metastasis)

Figure 5: Single cell suspensions of tumors were CFSE stained, before being spiked-in into patients' blood to be enriched in the CTCelect instrument. (A) Enriched SCL1 cell bound to the magnetic beads; verified by CFSE staining and EpCAM expression. (B) Enriched primary tumor cell bound to the magnetic beads; verified by CFSE staining and EpCAM expression. (C) Enriched cell from a metastatic lesion bound to the magnetic beads; verified by CFSE staining and EpCAM expression. (D) Enriched CTC bound to the magnetic beads; verified by EpCAM expression.

Blood Biochemistry Cartridge for liver patient management

functionality

- blood sampling
- sample preparation
- analysis of 6 parameters

assay

- 20 µl blood (finger prick)
- 5 liquids
- 4 freeze dryed reagents

assay fully implemented on cartridge

On-cartridge serum generation

functionality

- aspiration in capillary
- transfer to coagulation chamber
- coagulation
- extraction of serum

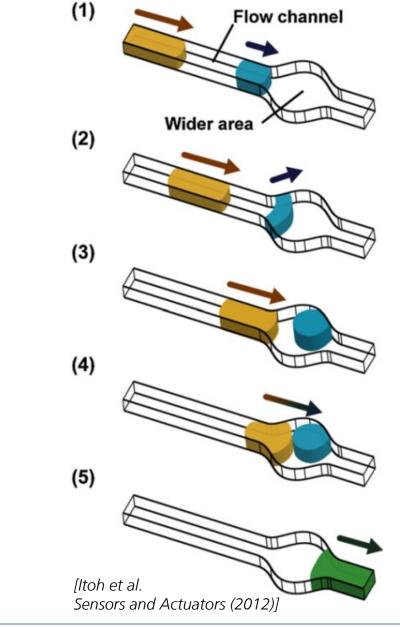
serum quality

- additional hemolysis acceptable for downstream analysis
- RBCs sediment in dilution chamber

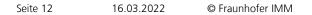
20µl blood (finger prick) → 5µl serum

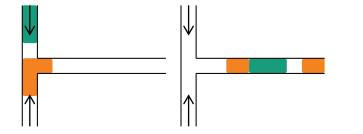
serum quality

run	hemolysis (%)	RBC count (1/µl)
#1	1.17	22,500
#2	2.56	168,750
#3	1.92	625,000
#4	0.75	1,725,000
#5	0.37	3,450,000
#6	1.21	28,750
#7	0.30	90,000
#8	1.33	165,000
average	1.20	789,400

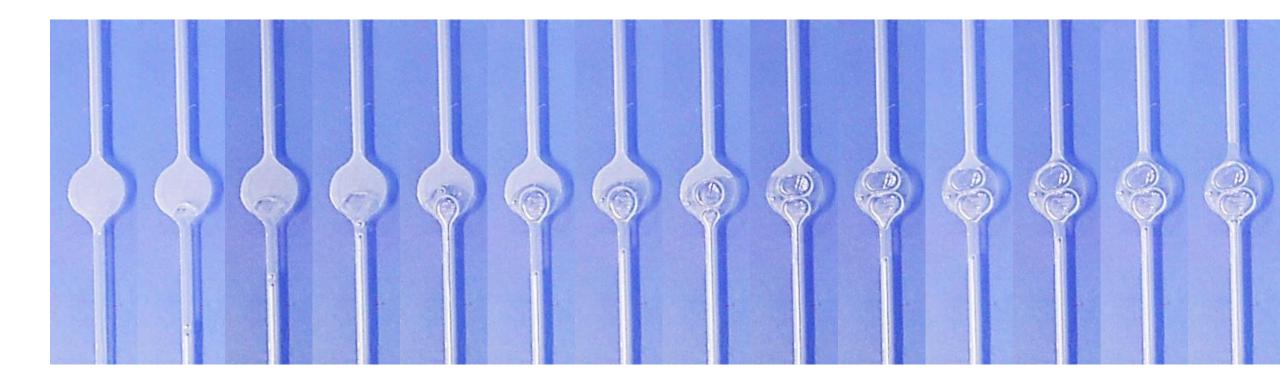

Dilution in plug flows

problem


- T-junction requires precise plug positioning
- tedious process control required!



 Itoh et al.: "merging of two droplets ... wider portion"



Dilution in case of "real" liquids

Hydrophilic & high surface tension

bubble formation & capillary drift backwards !!

Dilution chamber on blood biochemistry cartridge

functionality

- dilution 1:5 (2 μl : 10 μl)
- liquid 1: blood serum
- Iiquid 2: glucose in water (5 wt.%)

properties

- fully passive structure
- layout adaptable to contact angle and surface energy
- wide range of dilution factors in a given design

key advantage: minimized process control!

Contact

Dr. Michael Baßler Head of Division Diagnostics Tel. +49 6131 990 399 michael.bassler@imm.fraunhofer.de

 $\frac{Q_P}{Q_P + Q_H} = \frac{1}{21}$

Fraunho

300 µm

00000

00049479

MM

Ø 25µm 8,2pi

Ø 29µm 12,8pl

10 mm

20000

Fraunhofer Institute for Microengineering and Microsystems IMM

5mm

100